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Abstract

It is a well-known fact that if m is the multiplicity of
a numerical semigroup S, then the size of the minimal
presentation is at most

(
m
2
)
. We introduce a combina-

torial approach involving posets to determine the attain-
able minimal presentation sizes given a fixed m, which
has been a long-standing open problem.

Our Terminology
▶ A numerical semigroup is a cofinite subset of positive

integers closed under addition.
S = ⟨6, 9, 20⟩ = {0, 6, 9, 12, 15, 18, 20, 21, ...}

▶ Each numerical semigroup has a minimal set of generators.
The multiplicity is the smallest element in the set of
generators.

S = ⟨6, 9, 20⟩ =⇒ m = 6
▶ The embedding dimension is the number of elements

in the minimal set of generators.
S = ⟨6, 9, 20⟩ =⇒ e = 3

▶ A trade is two distinct ways of writing the same number
using the minimal set of generators.

S = ⟨6, 9, 20⟩ =⇒ 18 = 3 · 6 = 2 · 9
▶ The minimal presentation size of a numerical

semigroup is the smallest number of trades in terms of
which all other trades can be written as a combination.
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Kunz Poset
Given a numerical semigroup S with multiplicity m, the Kunz
poset is the partially ordered set with ground set Zm obtained
by the equivalence class in Zm.

Figure 1: Poset of Zm (left) and Kunz Poset of S = ⟨5, 6, 9⟩ (right)

Main Theorem (EKO)

The minimal presentation size of a numerical semigroup S
is equal to the sum of the number of outer Betti elements
and relations of its Kunz poset P .

Outer Betti Elements
An outer Betti element of P is a factorization missing
in the Kunz poset that is connected by a single step to an
element of the Kunz poset.

Figure 2: The 10 =
(4

2
)

+ 4 =
(5

2
)

outer Betti elements in Kunz Poset
of S = ⟨m, m + 1, m + 2, m + 3, m + 4⟩

Figure 3: Outer Betti Elements in Kunz Poset of S = ⟨8, 9, 11, 21, 15⟩
of the S = ⟨m, m + 1, m + 3, 2m + 5, m + 7, ..., m + (m − 1)⟩ class of
nmgs with mp size |ρ| =

(
m−3

2
)

+ 1

Figure 4: Minimal Presentation Sizes of Numerical Semigroups (QR code for website with the 3D plot)

Results

Theorem. (EKO) There are no numerical semigroups of mul-
tiplicity m with minimal presentation size between

(
m−1

2
)

and(
m
2
)
.

Theorem. (EKO) Let S be a numerical semigroup with em-
bedding dimension m−r. Then the minimal presentation size
of S is at least

(
m−r

2
)

− r.

Theorem. (EKO) The minimal presentation size of a numer-
ical semigroups is given by the following formula

|ρ| =
(

m − r

2

)
+

∑
1≤i≤r

(
d(pi) − b(pi) + x(pi)

)
where d(pi) is the number of relations occurring at p1, x(pi)
is the new outer Betti elements added in each step of the
construction of P , and b(pi) is the number of outer Betti
elements occuring at pi.

Open Questions

Conjecture. (EKO) For r < m
2 , the lower bound(

m−r
2
)

− r is an optimal lower bound for the minimal
presentation size.

Question. What is the optimal lower bound for minimal
presentation size when r ≥ m

2 ?

Conjecture. (EKO) For all multiplicities, there exists a
numerical semigroups of embedding dimension m−5 and
minimal presentation size

(
m−5

2
)

+ 2.
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